Cl-Zn-Cl ⁱ	109.91 (7)	C2—N—C4	111.2 (12)
$C_{1} - 7n - C_{1}^{n}$	108.60 (14)	C3—N—C4	103.6 (12)
$C_1 - N - C_2$	116.8 (14)	N-C1-C11	112.9 (13)
CI - N - C3	116.0 (13)	N—C2—C22	111.6 (13)
C1 - N - C4	104.1 (12)	N-C3-C33	115.3 (14)
C2-N-C3	104.5 (12)	N-C4-C44	118.2 (15)

Symmetry codes: (i) $-y, \frac{1}{2} + x, \frac{1}{2} - z$; (ii) $-\frac{1}{2} - x, \frac{1}{2} - y, z$.

The structures were solved by the Patterson method using *SHELXS86* (Sheldrick, 1990) and from subsequent difference Fourier calculations using *SHELXL93* (Sheldrick, 1993), and refined by full-matrix least-squares techniques, with isotropic displacement parameters for non-H atoms, except for Hg and Cl which were refined anisotropically. Because of disorder of the tetraethylammonium group, the bond lengths were constrained [N—C = 1.50(1) and C—C = 1.54(1)Å]. The H atoms were idealized with the standard methods in *SHELXL93* and included in the least-squares process as fixed contributors, with a common freely refining isotropic displacement parameter. The figure was prepared using *ORTEPII* (Johnson, 1976) adapted for the Macintosh by André & Michalowicz (1991).

For all compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: local program; program(s) used to refine structures: SHELXL93; software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MD1004). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- André, D. & Michalowicz, A. (1991). MACORTEP. Laboratoire de Physicochimie Structurale, UFR de Sciences et Technologie. Creteil, France.
- Caëtano, O., Lopez, M., Mahoui, A., Lapasset, J., Moret, J., Assih, T. & Saint Grégoire, P. (1995). Ferroelectr. Lett. 19, 69-74.
- Czapla, Z. & Dacko, S. (1992). Ferroelectrics, 125, 17-22.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gesi, K. (1994). Ferroelectrics, 159, 49-54.
- Gill, N. S. & Nyholm, R. S. (1959). J. Chem. Soc. 23, 3997-4007.
- Iwata, M. & Ishibashi, Y. (1991). J. Phys. Soc. Jpn, 60, 3245-3248.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kahrizi, M. & Steinitz, M. O. (1990). Solid State Commun. 74, 333-335.
- Mahoui, A., Lapasset, J., Moret, J. & Saint Grégoire, P. (1994). Z. Kristallogr. 210, 125-128.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXI93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stucky, G. D., Folker, J. B. & Kistenmacher, T. J. (1967). Acta Cryst. 23, 1064–1070.
- Wolthuis, A. J., Huiskamp, W. J., De Jongh, L. J. & Carlin, R. L. (1986). *Physica*, B142, 301-319.

Acta Cryst. (1996). C52, 2674-2676

Tetraethylammonium Tetramethylammonium Tetrachlorocuprate(II), [(C₂H₅)₄N][(CH₃)₄N][CuCl₄]

Abdelaziz Mahoui, Jacques Lapasset, Jacques Moret and Pierre Saint Grégoire

GDPC, cc 026, Université Montpellier II, Place E. Bataillon, 34095 Montpellier CEDEX 5, France. E-mail: lapas@gdpc. univ-montp2.fr

(Received 21 February 1996; accepted 3 July 1996)

Abstract

The title compound contains four isolated and discrete moieties, *i.e.* two independent $[(CH_3)_4N]^+$ cations, with one ordered on a $\overline{4}$ axis and the other disordered with the central N atom on a 2_c axis, one $[(C_2H_5)_4N]^+$ cation, on a mirror plane and in a *trans* conformation, and one distorted tetrahedral $[CuCl_4]^{2-}$ anion on another mirror. The crystal structure is isomorphous with that of $[(C_2H_5)_4N][(CH_3)_4N][ZnCl_4]$ [Caëtano, Lapasset & Saint Grégoire (1995). Acta Cryst. C51, 220–222].

Comment

As part of our studies of structural instabilities in the $[(C_2H_5)_4N]_2[MX_4]$ family (Mahoui, Lapasset, Moret & Saint Grégoire, 1994; Mahoui, Lapasset, Sannikov, Moret & Saint Grégoire, 1996; Mahoui, Lapasset, Moret, Lopez & Saint Grégoire, 1995; Caëtano, Lopez, Mahoui, Lapasset, Moret, Assih & Saint Grégoire, 1995), we have investigated the single-crystal structure of the title compound, (I), which belongs to a sub-family of $[(C_2H_5)_4N]_2[MX_4]$, where one $[(C_2H_5)_4N]^+$ (TEA) cation has been substituted by a $[(CH_3)_4N]^+$ (TMA) cation and MX_4 corresponds to CuCl₄.

The crystal structure analysis of (I) shows a structure isomorphous with (TEA)(TMA)[ZnCl₄] (Caëtano, Lapasset & Saint Grégoire, 1995). In this compound, the substitution of zinc by copper does not modify the structure, unlike in (TEA)₂[ZnCl₄] (Mahoui, Lapasset, Moret & Saint Grégoire, 1996) and (TEA)₂[CuCl₄] (Mahoui, Lapasset, Sannikov, Moret & Saint Grégoire, 1996), where the TEA cations possess different disorders.

The crystal structure of (I) consists of discrete $[CuCl_4]^{2-}$, TEA and TMA moieties. The mutual arrangement of the different moieties is illustrated in

Fig. 1. The structure is organized into alternating layers, $[CuCl_4]^{2-}$, stacked along [001]. The Cu, Cl2 and Cl3 atoms of the anion lie in a diagonal mirror plane, whereas the Cl1 atom is in a general position; the corresponding tetrahedra present a distorted geometry with bond lengths and angles in the ranges 2.242(5)-2.264 (5) Å and 105.5 (1)-118.9 (2)°, respectively. The Cu-Cl bond lengths are larger than those observed for $[CuCl_4]^{2-}$ in the corresponding $(TEA)_2[CuCl_4]$ crystal (Mahoui et al., 1994) [Cu-Cl 2.225 (6) Å] and the tetrahedral geometry less distorted [Cl--Cu--Cl $102.5(3)-113.1(2)^{\circ}$]. All [CuCl₄] tetrahedra, facing one another, have one of their threefold axes, *i.e.* that lying in the Cu-Cl2 bond direction, tilted slightly away from the crystallographic c axis. As for the anion, two chains of the TEA group, namely, N1-C121-C122 and N1---C131-C132, lie in the same diagonal mirror plane, whereas atoms C111 and C112 are in general positions, all leading to a trans conformation. The central N atoms (N2 and N3) of the two independent TMA groups are situated in special positions, (0,0,0) and $(0,\frac{1}{2},0.0054)$ for the ordered and disordered groups, respectively, on the $\overline{4}$ and 2_{r} axes. The bond lengths and angles in the different cations are close to the expected values (Table 2).

The organization of the moieties in the (TEA)(TMA)-[CuCl₄] crystal is similar to that in (TEA)₂[CdBr₄] (Geselle & Fuess, 1994). In fact, the $[CdBr_4]^{2-}$ anions have the same geometry and symmetry positions as $[CuCl_4]^{2-}$. One of the three independent TEA groups in (TEA)₂[CdBr₄] presents the same *trans* conformation and symmetry position as the corresponding one

Fig. 1. An *ORTEPII* (Johnson, 1976; André & Michalowicz, 1991) drawing with atomic labelling scheme viewed along [001]. Atoms are drawn as spheres of arbitrary radii. Only one position of the disordered TMA cation at $(0, \frac{1}{2}, 0.0054)$ is shown.

Experimental

A stoichiometric mixture of anhydrous $(C_2H_5)_4NCl$, $CuCl_2$ and $(CH_3)_4NCl$ dissolved in absolute ethanol afforded single crystals of (I) on slow cooling.

(I), namely, that situated on the axis with $(0, \frac{1}{2}, z)$ coor-

dinates, is also disordered in (TEA)₂[CdBr₄].

Crystal data

$(C_8H_{20}N)(C_4H_{12}N)[CuCl_4]$	Cu $K\alpha$ radiation
$M_r = 409.74$	$\lambda = 1.5418 \text{ Å}$
Tetragonal	Cell parameters from 20
$P\overline{4}2_1m$	reflections
a = 13.078 (10) Å	$\theta = 42-55^{\circ}$
c = 11.871 (10) Å	$\mu = 6.280 \text{ mm}^{-1}$
$V = 2030.3 (28) \text{ Å}^3$	T = 293 (2) K
Z = 4	Prism
$D_x = 1.340 \text{ Mg m}^{-3}$	$0.34 \times 0.29 \times 0.20$ mm
D_m not measured	Yellow-orange

Data collection

Enraf-Nonius CAD-3 diffractometer $\theta/2\theta$ scans Absorption correction: *SHELX*76 Gaussian (Sheldrick, 1976) $T_{min} = 0.1783, T_{max} =$ 0.4250 1765 measured reflections 952 independent reflections

Refinement

Refinement on F^2 $\Delta \mu$ $R[F^2 > 2\sigma(F^2)] = 0.0702$ $\Delta \mu$ $wR(F^2) = 0.1763$ ExtS = 1.097Att952 reflectionsff73 parametersffH-atom parameters notrefined $w = 1/[\sigma^2(F_o^2) + (0.0838P)^2]$ Ab+ 5.7928P]Hwhere $P = (F_o^2 + 2F_c^2)/3$ Fla $(\Delta/\sigma)_{max} = 0.001$ Fla

 $\Delta \rho_{max} = 0.492 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.484 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4) Absolute configuration: Flack (1983) Flack parameter = -0.14 (10)

866 observed reflections

2 standard reflections

reflections

monitored every 40

intensity decay: none

 $[I > 2\sigma(I)]$

 $R_{\rm int} = 0.0238$ $\theta_{\rm max} = 65.12^{\circ}$

 $h = 0 \rightarrow 10$

 $k = 0 \rightarrow 15$

 $l = 0 \rightarrow 13$

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
Cu	0.74605 (10)	0.24605 (10)	0.80803 (15)	0.0507 (5)
CII	0.7926 (3)	0.0865 (2)	0.7612 (3)	0.0951 (12)
Cl2	0.7517 (4)	0.2517 (4)	0.9967 (3)	0.106(2)

010	0.0502 (0)	0.0500.40	0 7001 (3)	0.0001.010
CI3	0.8503(2)	0.3503(2)	0.7081(3)	0.0801 (12
NI	0.2897 (6)	0.7897 (6)	0.3923 (8)	0.045 (2)
C111	0.3802 (8)	0.7492 (9)	0.3248 (9)	0.067 (3)
C112	0.4323 (10)	0.6571 (10)	0.3765 (11)	0.092 (4)
C121	0.3227 (9)	0.8227 (9)	0.5087 (14)	0.076 (4)
C122	0.4039 (10)	0.9039 (10)	0.5107 (16)	0.089 (5)
C131	0.2095 (10)	0.7095 (10)	0.4090 (16)	0.087 (5)
C132	0.1659(11)	0.6659 (11)	0.3019 (15)	0.090 (5)
N2	0	0	0	0.064 (5)
C2	0.0321 (10)	0.0869 (10)	-0.0709(11)	0.081 (3)
N3	0	1/2	0.0054 (14)	0.056 (5)
C31†	-0.023(5)	0.607 (3)	-0.031(5)	0.105 (10)
C32†	-0.100(3)	0.443 (4)	0.024 (4)	0.105 (10)
C33†	0.051 (4)	0.518 (4)	0.114 (3)	0.105 (10)
C341	0.060 (2)	0.441 (2)	-0.076(4)	0.105 (10)

 \dagger Site occupancy = 0.25. \ddagger Site occupancy = 0.50.

Table 2. Selected geometric parameters (Å, °)

Cu—Cl1	2.243 (3)	C121—C122	1.50(2)
Cu—C12	2.242 (5)	C131-C132	1.51 (3)
Cu—Cl3	2.264 (5)	N2C2	1.48(1)
NI-C111	1.52(1)	N3-C31	1.49 (4)
NIC121	1.51 (2)	N3—C32	1.52 (4)
NI-C131	1.50 (2)	N3C33	1.47 (3)
C111—C112	1.51 (2)	N3—C34	1.47 (3)
Cl1—Cu—Cl1 ⁱ	116.3 (2)	C132-C131-N1	115(1)
Cl1—Cu—Cl2	105.6(1)	C2N2C2 ⁱⁱⁱ	110.4 (10)
Cl1—Cu—Cl3	105.5(1)	C2-N2-C2 ^{iv}	109.0 (5)
Cl2—Cu—Cl3	118.9 (2)	C31—N3—C32	109 (4)
C111—N1—C111 ⁱⁱ	105.3 (10)	C31—N3—C33	101 (3)
C111—N1—C121	111.0 (7)	C31—N3—C34	114 (3)
C111—N1—C131	111.7 (7)	C32—N3—C33	110 (3)
C121—N1—C131	106.2 (11)	C32N3C34	107 (2)
C112—C111—N1	114.4 (9)	C33—N3—C34	115 (3)
C122C121N1	115(1)		

Symmetry codes: (i) $\frac{1}{2} + y, x - \frac{1}{2}, z$; (ii) $y - \frac{1}{2}, \frac{1}{2} + x, z$; (iii) -x, -y, z; (iv) -y, x, -z.

The title structure was solved by the Patterson method, from subsequent difference-Fourier calculations and refined by fullmatrix least-squares techniques with isotropic displacement parameters for non-H atoms, except Cu and Cl atoms which were refined anisotropically. The bond lengths of the disordered tetramethylammonium group were constrained [N—C = 1.45(5) Å]. The H atoms were idealized with the standard methods in *SHELXL93* (Sheldrick, 1993) and included in the least-squares process as fixed contributors; their isotropic displacement parameters were set at $1.5U_{iso}$ of the corresponding C atoms.

Data collection: Enraf-Nonius CAD-3 software. Cell refinement: Enraf-Nonius CAD-3 software. Data reduction: local program. Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL93*. Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *SHELXL93*.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SK1018). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

André, D. & Michalowicz, A. (1991). MACORTEP. Laboratoire de Physicochimie Structurale, UFR de Sciences et Technologie, Creteil, France.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved

- Caëtano, O., Lapasset, J. & Saint Grégoire, P. (1995). Acta Cryst. C51, 220-222.
- Caëtano, O., Lopez, M., Mahoui, A., Lapasset, J., Moret, J., Assih, T. & Saint Grégoire, P. (1995). Ferroelectr. Lett. 19, 69–74.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Geselle, M. & Fuess, H. (1994). Acta Cryst. C50, 1582-1585.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Mahoui, A., Lapasset, J., Moret, J., Lopez, M. & Saint Grégoire, P. (1995). Ferroelectrics, 175, 79–84.
- Mahoui, A., Lapasset, J., Moret, J. & Saint Grégoire, P. (1994). Z. Kristallogr. 210, 125–128.
- Mahoui, A., Lapasset, J., Moret, J. & Saint Grégoire, P. (1996). Acta Cryst. C52. In the press.
- Mahoui, A., Lapasset, J., Sannikov, D. G., Moret, J. & Saint Grégoire, P. (1996). Z. Phys. B, 99, 543-549.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.

Acta Cryst. (1996). C52, 2676-2678

Bis[4-(5-chloro-2-hydroxyphenylimino-N,O:O)-2-penten-2-olato(2–)-O]dicopper(II)

M. Nawaz Tahir,^{*a*} Dinçer Ülkü,^{*a*} Orhan Atakol^{*b*} and Abdülkadır Akay^{*b*}

^aDepartment of Engineering Physics. Hacettepe University, Beytepe 06532, Ankara, Turkey, and ^bDepartment of Chemistry, Faculty of Science, University of Ankara, Beşevler 06100, Ankara, Turkey. E-mail: dulku@eti.cc. hun.edu.tr

(Received 29 April 1996; accepted 25 June 1996)

Abstract

In the title complex, $[Cu_2(C_{11}H_{10}ClNO_2)_2]$, the Cu atoms have two phenolic oxygen bridges resulting in centrosymmetric Cu dimers. The coordination around copper is distorted square planar, with an average Cu—O distance of 1.921 (5) and a Cu—N distance of 1.910 (5) Å. Two additional O atoms belonging to adjacent dimers at distances of 2.986 (6) and 3.139 (6) Å complete the distorted octahedron about copper.

Comment

Doubly oxygen-bridged dimeric copper(II) complexes with subnormal magnetic moments are known to exhibit super-exchange interaction (Kato, Jonassen & Fanning, 1964; Butcher & Sinn, 1976; Kato & Muto, 1988). The